Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 14(12)2022 12 08.
Article in English | MEDLINE | ID: covidwho-2155310

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the general population in the context of a relatively high immunity gained through the early waves of coronavirus disease 19 (COVID-19), and vaccination campaigns. Despite this context, a significant number of patients were hospitalized, and identifying the risk factors associated with severe disease in the Omicron era is critical for targeting further preventive, and curative interventions. We retrospectively analyzed the individual medical records of 1501 SARS-CoV-2 positive hospitalized patients between 13 December 2021, and 13 February 2022, in Belgium, of which 187 (12.5%) were infected with Delta, and 1036 (69.0%) with Omicron. Unvaccinated adults showed an increased risk of moderate/severe/critical/fatal COVID-19 (crude OR 1.54; 95% CI 1.09-2.16) compared to vaccinated patients, whether infected with Omicron or Delta. In adults infected with Omicron and moderate/severe/critical/fatal COVID-19 (n = 323), immunocompromised patients showed an increased risk of in-hospital mortality related to COVID-19 (adjusted OR 2.42; 95% CI 1.39-4.22), compared to non-immunocompromised patients. The upcoming impact of the pandemic will be defined by evolving viral variants, and the immune system status of the population. The observations support that, in the context of an intrinsically less virulent variant, vaccination and underlying patient immunity remain the main drivers of severe disease.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Retrospective Studies , Immunocompromised Host
2.
Viruses ; 14(10)2022 10 20.
Article in English | MEDLINE | ID: covidwho-2081913

ABSTRACT

An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available.


Subject(s)
COVID-19 , Pandemics , Humans , Belgium/epidemiology , COVID-19/epidemiology , Genome, Viral , Genomics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing
3.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1511413

ABSTRACT

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Laboratories, Clinical , Pilot Projects
4.
Int Immunopharmacol ; 100: 108163, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1415472

ABSTRACT

Zinc deficiency is associated with impaired antiviral response, cytokine releasing syndrome (CRS), and acute respiratory distress syndrome. Notably, similar complications are being observed during severe SARS-CoV-2 infection. We conducted a prospective, single-center, observational study in a tertiary university hospital (CUB-Hôpital Erasme, Brussels) to address the zinc status, the association between the plasma zinc concentration, development of CRS, and the clinical outcomes in PCR-confirmed and hospitalized COVID-19 patients. One hundred and thirty-nine eligible patients were included between May 2020 and November 2020 (median age of 65 years [IQR = 54, 77]). Our cohort's median plasma zinc concentration was 57 µg/dL (interquartile range [IQR] = 45, 67) compared to 74 µg/dL (IQR = 64, 84) in the retrospective non-COVID-19 control group (N = 1513; p < 0.001). Markedly, the absolute majority of COVID-19 patients (96%) were zinc deficient (<80 µg/dL). The median zinc concentration was lower in patients with CRS compared to those without CRS (-5 µg/dL; 95% CI = -10.5, 0.051; p = 0.048). Among the tested outcomes, zinc concentration is significantly correlated with only the length of hospital stay (rho = -0.19; p = 0.022), but not with mortality or morbidity. As such, our findings do not support the role of zinc as a robust prognostic marker among hospitalized COVID-19 patients who in our cohort presented a high prevalence of zinc deficiency. It might be more beneficial to explore the role of zinc as a biomarker for assessing the risk of developing a tissue-damaging CRS and predicting outcomes in patients diagnosed with COVID-19 at the early stage of the disease.


Subject(s)
COVID-19/complications , Cytokine Release Syndrome/etiology , SARS-CoV-2 , Zinc/blood , Aged , COVID-19/blood , Cytokine Release Syndrome/blood , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Zinc/physiology
SELECTION OF CITATIONS
SEARCH DETAIL